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Fuel and Core
• Fuel

– Amount and composition to support a chain reaction 
for a sustained time (years)

– Will treat fuel as a ‘black box’ for now; detailed 
discussion of fuels will follow reactor discussion

• Core
– The tightly packed array of fuel
– Heterogeneous: rods separated by coolant and/or 

moderator
– Homogeneous:  Fuel dissolved in coolant and/or 

moderator
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Coolant
• Coolant:  none is ideal

– Low melting point, high boiling point (usually)
– Non-corrosive
– Low neutron absorption cross section
– Stable to elevated temperatures and radiation
– Low induced radioactivity
– No reaction with turbine working fluid
– High heat capacity and heat transfer coefficient
– Low pumping power
– Low cost and readily available
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Coolant Comparison
Criteria Light

Water
Heavy
Water

He Carbon
Dioxide

Na, K Pb, Bi Molten
Salts

Organics

Low mp A A A A D D D A

High bp D D NA D A A A D

Corrosion D D A D A A(Pb); D(Bi) A A

Stability-T A A A D A A A D

Stability-γ D D A ? A A A D

Induced activity A D A A D(Na); A(K) A(Pb); D(Bi) D (Li) A

Working fluid A A A A D M M M

Heat transfer M M D D A A A M

Pumping power M M D D A A A M

Cost A D D A A A A A

Availability A A D A A A A A

% of world 
reactors

85 10 0 4 1 (Na) 0 0 0
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Moderator
• Thermal reactors only

– Moderating ratio discussed earlier
• For water-cooled reactors the coolant is the 

moderator
• Only other moderator in use or expected to be 

in use is graphite
– Now:  He 
– Future:  Perhaps molten salt coolant
– Density:  Theoretical 2.26 g/cm3, actual                

1.6-1.7 g/cm3

– Annealing may be needed periodically at low temps
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Major Components
• Pressure vessel for water and gas-cooled reactors
• Coolant pumps or compressors
• Heat exchangers (some)
• Turbine-Generator
• Condenser/cooler/cooling towers
• Interconnecting piping
• Waste processing
• Water pool to store spent fuel
• Labs and shops to handle mildly radioactive items
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Cooling Tower Types
• Can be natural circulation or mechanical (fan) 

driven, wet or dry
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Cooling Towers
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Waste Processing: Liquid
• Coolant water makeup and cleanup

– Corrosion control is a major issue;  water chemistry 
is carefully controlled

– Removal of radioactive species and species that 
produce penetrating radiation when activated

• Use ion exchange, reverse osmosis
• Evaporation to concentrate dissolved species, recycle 

water
• Concentrate is solidified (grout) or stabilized (absorption) 

to become a solid waste
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Waste Processing: Gaseous
• Gaseous effluent

– Building maintained under negative pressure
• The higher the radioactivity, the lower the pressure

– Final effluent passed through gaseous effluent 
treatment system

• Hold up short lived isotopes of Kr, Xe, N, and I on 
charcoal beds or similar to allow them to decay

• High-Efficiency Particulate Air (HEPA) filter
• Beds and filters eventually become solid wastes
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Waste Processing:  Solid
• Solid wastes

– Solid product from gas and liquid treatment
– Other radioactive wastes:  lab equipment, protective 

gear, failed equipment, . . . .
• Put in drums and sent to near-surface low-level 

waste disposal site for burial
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Radiation Protection
• Routine radiation protection is primarily an 

issue for workers;  public is too far away
• Radiation sources

– Reactor (limited access during operation)
– Trace contamination in cooling water
– Places where nuclides accumulate (e.g., cleanup 

systems, waste storage areas)
• Most shielding is concrete or water

– Some steel or other metals in tight areas
• Limit time and increase distance:  ALARA

– Worker dose monitored carefully by resident staff
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Public Safety
• Effluent processing: already discussed
• Nuclear accidents:  later



Nuclear Reactor Evolution
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Nuclear Reactor Generations



Nuclear Power Plant Thermal 
Cycles
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Rankine (Steam) Cycle
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Brayton Cycle: Gas-Cooled
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Process Heat Cycle
• The heat from a nuclear reactor is used directly, 

e.g., petroleum refinery, chemical 
manufacturing



Reactor Designs
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Framework
• Will use the type of moderator (or not) and then 

the coolant as a framework
– Water moderated

• Light
• Heavy

– Graphite moderated
• Gas cooled
• Molten salt cooled

– Unmoderated
• Sodium cooled
• Metal cooled except sodium

– Legacy reactors
– Small modular reactors



Reactors

Water Moderated
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Pressurized Water Reactor (PWR)
Thermal Efficiency:  33%
Outlet temperature:  600 – 625 F
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PWR Nuclear Steam System
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PWR Pressure Vessel
• 15 to 20 ft 

diameter
• 40 to 60 ft tall
• 10” thick
• Carbon steel 

lined with 
stainless steel
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PWR Core
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Coolant Pumps
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Steam Generator
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PWR Control
• Rods inserted from top

– Shut-down:  used only to assure complete 
shutdown after criticality has ceased

– Full-length:  Usually withdrawn but may be used to 
control transients

– Part-length:  shorter than a fuel assembly, used to 
shape power in axial direction

– Typically made of clad Ag-In-Cd 
• Routine control:  vary the concentration of 

dissolved boric acid in the coolant
• SCRAM:  Emergency shutdown of reactor
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Power Uprating
• Over the years the power rating of most nuclear 

reactors has been increased
– <2%:  Improved reactor physics and heat transfer 

predictions
– 2-7%:  Improved instrumentation allows reduced 

margins
– 7-20%:  Better major equipment (pumps, steam 

generators, etc.)
• Equivalent to building 5200 MWe of capacity
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Russian PWR:  VVER
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GEN III+ PWRs
• Vendors are marketing more advanced PWRs
• Westinghouse:  AP600 and AP1000

– AP = Advanced Passive
• AREVA: US-EPR

– European Pressurized Reactor
• Mitsubishi: US-APWR
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PWR Design Changes
• Less equipment and components
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PWR Design Changes
• Smaller footprint:  concrete = $$$
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Improved Reactor Efficiency
• Thermal efficiency claimed to be increased 

from 33% to 37%
– No increase in outlet temperature



37

Enabling the Improvements
• Design standardization
• Modular construction of components in 

factories and assembly in the field
• Efficiency improvements

– Reactor physics: advanced computing, better data
– Computer-aided design:  advanced computing
– Lower margins:  Better instrumentation
– Equipment:  Advanced computing and knowledge

• More on changes in safety approach and fuels 
later
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PWR Refueling-1
• Shutdown reactor
• Establish high 

concentrations of 
boron

• Let it cool and 
depressurize

• Remove head 
bolts

• Remove pressure 
vessel head and 
control rods 
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PWR Refueling-2
• Remove the upper 

internals from the reactor
• Flood the refueling pool
• Begin removing spent fuel 

and inserting fresh fuel
• A wide spectrum of 

maintenance on the entire 
reactor system is done 
while refueling is ongoing
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PWR Refueling-3
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PWR Refueling-4
• After refueling the reactor is reassembled by 

reversing the previous sequence
• Average refueling outage is 38 to 42 days

– Gen III+ is shooting for half of this
• After initial load 20% to 33% of the core is 

replaced during each refueling outage
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Nuclear Accidents
• A nuclear reactor is a very concentrated source 

of heat:  50 to 100 kW/liter
• Immediately after shutdown the reactor is 

generating about 6% of its operating power due 
to decay heat
– 200 MW for a large reactor
– Declines about 10%/day in the short term
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Progress of a Reactor Accident
• The primary coolant loop is breached and 

coolant water escapes
– Reactor goes subcritical:  no coolant

• Fuel surface dries out and begins to heat
• ~2200 F the cladding begins to fail and burn
• Radionuclides are volatilized from the fuel and 

enter the containment outside the reactor
• An over-pressurized containment can be 

breached and radionuclides escape to the 
environment
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Objective
• Rule #1:  Keep the core wet

– If not, really bad things happen
• Cladding breach and release of volatile species
• Cladding fire
• Fuel melt
• Steam explosions

• Rule #2:  See Rule #1
– Defense in depth:  multiple barriers

• Rule #3:  Deal with it
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Preventing an Accident
• Design solutions

– Eliminate features that facilitate coolant release
• Pressure vessel penetrations below the core
• Requirement for active cooling in accidents

• Detection solutions
– Detect potential problems before they can lead to 

coolant loss, e.g., corrosion
– Detect coolant loss early and accurately

• Training solutions
– Understand the reactor: normal and off-normal
– Understand when to intervene --  or not
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Controlling an Accident
• If coolant loss occurs supply more coolant and sustain it

– Coolant and power are essential

–  Recirculation of water from a sump is necessary

Power
-  External
-  Emergency 
diesel generators 
(tested regularly) 
are needed
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Containing a Release
• Keep releases from pressure vessel within the 

building
– Issue:  contain increasing pressure from steam

• Solution:  Containment Dome
– Reinforced concrete
– Enough volume to handle pressure
– Design features to reduce pressure

• Water spray
• Ice bank
• Heat exchange to the environment 
• Not standardized for PWRs

• Last resort:  filtered venting to reduce pressure
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PWR Containment Approaches
Ice
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PWR Primary Containment
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GEN III+ Safety Features
• Westinghouse AP reactors

– Water reservoir:  In an accident the well surrounding 
the pressure vessel is flooded

– Passive cooling:  water circulates in the core via 
natural convection

– Containment building also operates passively:  
containment within containment

• AREVA
– Core catcher for melted debris
– No passive cooling



Boiling Water Reactors
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Boiling Water Reactor (BWR)

Thermal Efficiency:  33%
Outlet Temperature: 550 F
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Key Features vs. PWR
• Only a primary loop:  water boils in core and 

steam goes to turbine
• Boiling does not allow use of boric acid for 

control
– Control rod material is typically B4C

• One vendor for many years so designs are 
more standardized

• Steady evolution
– Reactor: BWR/1 → BWR/6
– Containment:  Mark I → Mark III
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BWR Reactor Coolant Flow
• Two water loops

– Primary coolant
– Internal recirculation

• Steam separator and 
dryer
– Vessel is taller (~60 ft) 

and wider (20-25 ft) than 
PWR

– Pressure is lower as is 
wall thickness

• Control rods enter from 
bottom
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BWR Reactor
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BWR Components

Core Basket

Vessel Head/Refueling Pool

Refueling Floor & Machine

Core During Refueling



57

BWR Safety Systems
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BWR Mark I Building Layout
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BWR Mark I Torus at Brown’s Ferry
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Fukushima Daiichi Event
• Initial status

– Plants are oceanfront
– Units 1-3, 5, and 6 operating; U4 shut down for 

repair
• Event:  3/11/11, 14:46 JST

– 9.0 offshore quake; design basis was 8.2:  6.3x
– A 14m tsunami an hour later

• Design basis 5.7m above sea level
• Reactors and equipment 10-13m above sea level
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Fukushima Daiichi Unit 1-3 Event
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Fukushima Daiichi Unit 1-3 Event
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Fukushima Daiichi Unit 1-3 Event
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Fukushima Daiichi Unit 1-3 Event
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Fukushima Daiichi Unit 4 Event
• Repairs: No fuel in 

reactor 
• Refueling cavity 

presumed to be 
flooded; gate 
status unknown

• Explosions 
occurred and 
damaged 
secondary 
containment
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Fukushima Daiichi Unit 4 Event
• Source of explosion not certain

– First thought to be due to low water levels leading 
to fuel overheating, oxidation, and hydrogen 
release

• More recent video from a submersible device 
in the pool showed little damage
– Spent fuel in refueling cavity?
– Acetylene
– Hydrogen from Unit 3 via common ventilation 

system
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Fukushima Daiichi Event
• Managing the situation

– Keep pouring water into reactor buildings
• Created a large contaminated water management 

problem which led to releases to the ocean
• Cracks resulted in leaks to the ocean

– Inert primary containment
– Restore site power
– Restore power inside reactors
– Restore closed-loop cooling
– Contain gaseous releases
– Process contained contaminated water
– D&D:  Will take years
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Fukushima Daiichi Event
• Status

– Much more is still unknown than is known
– Reasonably firm knowledge on what happened 

inside the four reactor is likely to take at least 
couple of years

• It took two years to get into the TMI core
– Still high radiation levels inside units and at site 

boundary
• Mainly due to Cs-137;  water processing should reduce 

radiation levels considerably
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GEN III+ BWRs
• Toshiba/GE:  Advanced BWR (ABWR)

– Thermal efficiency increased to 34.5%
– Recirculation pumps internalized:  no coolant 

penetrations on lower part of vessel
– Fine motion control rods for startup

• GE-Hitachi:  Economic and Simplified BWR 
(ESBWR)
– Thermal efficiency increased to 34.5%
– Natural circulation during operation and accidents
– Gravity flooding in an accident
– Passive containment

• Other improvements similar to PWR
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ABWR
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ESBWR



Backup



Super-Critical Water Reactor
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• Supercritical water
– Properties intermediate 

between a gas and a liquid
– Single phase
– Can diffuse through solids 

like a gas and dissolve 
materials like a liquid

• Supercritical water is  
used in fossil electricity 
production
– Supercritical CO2 is used to 

decaffeinate coffee

Supercritical Water

705 F

3200 psi
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SuperCritical Water Reactor (SCWR)
Thermal Efficiency: 44.8%
Outlet Temperature: 500 C/932 F
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SCWR:  A GEN IV System
• A BWR at high PWR+ pressure

– Only a primary loop
– Supercritical water does not change phase

• Density changes from about 0.9 to 0.1 g/cm3 in reactor
– Thermal spectrum but low SCW density will require 

water rods in fuel
• Advantages

– High efficiency
– Simple system
– Compact
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SCWR Status
• R&D project, lower priority
• Major R&D issues

– Materials of construction:  SCW is very corrosive
– Understanding SCW physical properties and 

radiolytic chemistry
– Accident phenomena and mitigation
– Design optimization



CANDU
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Canada Deuterium-Uranium 
(CANDU) Reactor

Efficiency: 32%
Outlet Temperature: 590 F
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CANDU Features
• Conceptually very similar to a PWR
• Major differences

– Cooled and moderated by heavy water
– Can operate on natural uranium as well as slightly 

enriched uranium
– Online refueling
– Horizontal pressure vessel
– Does not use boron for control
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CANDU Pressure Vessel: Calandria
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CANDU Reactor Face-1
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CANDU Reactor Face-2
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CANDU Control Systems
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CANDU Online Refueling
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CANDU Evolution
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CANDU Deployment
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CANDU Observations
• Online refueling

– May not be a huge advantage: still need to shut 
down for maintenance

• Capacity factors no better than LWRs

• Heavy water
– Copious producer of tritium
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CANDU GEN III+
• Advanced CANDU Reactor:  ACR-700, 1000

– Improved fuel to allow significant reduction in size of 
core and calandria

– Uses light water coolant; moderator still heavy water
– Higher coolant water pressure to increase outlet 

temperature to 605 F and efficiency to 36.5%
– Other improvements similar to LWRs
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Heavy Water Basics
• Deuterium constituted 0.015% of natural water
• Need to enrich it to 99%+ to use in reactors
• Enrichment processes are based on the mass 

difference between H and D, either directly or 
through its impacts on chemical exchange rates

• Three processes follow, others have been 
studied
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Heavy Water Production: Girdler
• Based on exchange between water and H2S 

capitalizing on differing equilibrium constants at 
different temperatures
– Widely used for initial enrichment
– Uses tall columns to contact water and H2S
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Heavy Water Production: Electrolysis
• Based on exchange between water and 

hydrogen capitalizing on differing equilibrium 
constants at different temperatures
– Used for initial enrichment
– Only used if very low cost electricity is available, 

e.g., hydropower
– Used by Germany in WW II
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Heavy Water Production:  Distillation
• Based on difference in boiling point of light and 

heavy water
• Widely used for final enrichment
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